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We study two multigroup mathematical models of the spread of HIV. In the di!erential
infectivity model, the infected population is divided into groups according to their infectious-
ness, and HIV is primarily spread by a small, highly infectious, group of superspreaders. In the
staged-progression model, every infected individual goes through a series of infection stages
and the virus is primarily spread by individuals in an initial highly infectious stage or in the late
stages of the disease. We demonstrate the importance of choosing appropriate initial condi-
tions, and de"ne a new approach to distributing the initial population among the subgroups so
as to minimize the arti"cial transients in the solutions due to unbalanced initial conditions. We
demonstrate that the rate of removal in and out of a population is an important, yet often
neglected, e!ect. We also illustrate the importance of distinguishing between the number of
partners a person has and the number of contacts per partner. By assuming that people with
many partners have fewer contacts per partner than people with few partners, we found that the
epidemic is less sensitive to the partner acquisition rate than one might expect. However, because
the probability of transmission of HIV per contact is low, the epidemic is very sensitive to the
number of contacts per partner. Modeling this distinction is particularly important when
estimating the impact of programs which encourage people to have fewer sexual partners.
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1. Introduction

Numerous studies show that the viral burden
during HIV infection varies in two ways:
temporally within a single individual, and, during
the chronic stages, between individuals [see Hy-
man et al. (1999) for references.] Recent studies of
heterosexual couples in Africa found that the
probability of transmission per sexual contact
increases along with increased viral levels in the
bloodstream, at least within the studied popula-
tions (Fideli et al., 2000; Quinn et al., 2000), and
that the viral load is the chief predictor of the
risk of heterosexual transmission of HIV. The
0022}5193/01/020227#23 $35.00/0
variations in viral levels and their connection
with variations in the infectiousness of an indi-
vidual introduce questions about the e!ec-
tiveness of methods for controlling the epidemic.
In order to study some of these questions, in
Hyman et al. (1999) we proposed a di!erential
infectivity (DI) model that accounts for di!er-
ences in infectiousness between individuals dur-
ing the chronic stages, and the correlation
between viral loads and rates of developing
AIDS. The present study compared the DI model
with a simple version of a well-established
staged-progression (SP) model, in which every
infected individual goes through the same series
( 2001 Academic Press
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of stages. The SP model accounts for time vari-
ations in infectiousness in the same individual.
The SP simulations provided insight into the
numerical computations of Jacquez et al. (1994,
1995), showing that, when partner acquisition
rates are high, many of the infections early in the
epidemic are caused by those in the initial acute
infectious stage. The DI model simulations dem-
onstrated that a small number of highly infec-
tious individuals can have a disproportionate
impact on the epidemic, even when they have
a short life expectancy.

The importance of sensitive analysis to under-
stand the impact of uncertainties model para-
meters has also been investigated by Blower,
Sanchez and Dowlatabadi (Blower & Dow-
latabadi, 1994; Sanchez & Blower, 1997) using
Latin Hypercubes. Our investigations emphasize
the sensitivity of the internal dynamics of the
epidemic to uncertainties in the parameters and
the initial conditions and complements their ap-
proach. Usually, there is little data on how infec-
tions are distributed among subgroups, so
researchers have to select an initial distribution of
the infected population based on some intuitive,
possibly arbitrary, justi"cation. However, it is
well known that initial conditions are important
in multigroup models (Jacquez & Simon, 1990). If
the choice of initial distribution a!ects the results,
then the researcher has to be extremely careful
when studying the sensitivity of the models to
parameters and when cross-comparing model re-
sults. Here we use numerical simulations to illus-
trate the extreme sensitivity of the timing of an
epidemic in multiple-group models to the
initial distribution of infected individuals among
the di!erent groups. We propose two initializa-
tion methods which are &&natural'' and robust,
and allow results from di!erent models to be
compared.

Previously, we showed that the DI and SP
models are very sensitive to the probability
of transmission per contact. In this paper, we
investigate the sensitivity of these two models to
the sexually active removal rate, the number of
partners per year, and number of contacts per
partner. The sexually active removal rate en-
compasses both physical movement and behav-
ior changes that bring people in and out of the
population at risk. It can vary enormously
between populations, and is much larger than the
natural death rate often used in modeling studies.
We demonstrate that both epidemic models are
very sensitive to this seemly simple and often
neglected parameter.

Most modeling studies of sexually transmitted
diseases recognize the partner acquisition rate as
one of the most sensitive parameters. The com-
mon assumption that the probability of transmis-
sion is directly proportional to the number of
partners is usually inappropriate when analysing
the impact of reducing the number of partners on
the course of an epidemic. The probability of
transmission per partner is a function of the
probability of transmission per contact and the
number of contacts per partner. Because
the number of contacts per partner tends to be
smaller when the partner acquisition rate is lar-
ger, the probability of transmission per partner
decreases as the number of partners per unit time
increases. This decrease will be most dramatic
when the probability of transmission per contact
is very small, as it is for HIV, and reduces the
sensitivity of the epidemic to the partner acquisi-
tion rate and has obvious implications for con-
trol programs designed to slow the epidemic by
encouraging people to have fewer partners. We
conclude that, for HIV spread in high-risk popu-
lations, the epidemic is as sensitive to the average
number of contacts per partner as it is to the
number of partners per unit time.

2. The DI and SP Model Formulations

The DI model is shown on the left in Fig. 1.
Individuals enter a speci"c group when they be-
come infected and stay in that group until they
are no longer transmitting the disease. Infectivity
and progression rates depend upon the group. In
contrast, in the SP model, shown on the right in
Fig. 1, all infected individuals enter the same
group, and then pass serially through a series of
groups before leaving the sexually active popula-
tion due to illness or other factors. Their infectiv-
ity also depends on their group. Hyman et al.
(1999) motivated both models and derived ex-
plicit formulas for the reproductive numbers and
the endemic steady states, including the fraction
of infections being caused by each group at
equilibrium.



FIG. 1. The DI model, shown on the left, divides the
infected population into groups according to their infec-
tiousness and di!erences in rates of developing AIDS. Infec-
ted people stay in the same group the whole time they are in
the population. In the SP model, shown on the right, every
infected individual goes through the same series of stages.
This allows us to account for a short early highly infectious
stage equivalent to the acute phase of infection, a middle
period of low infectiousness, and a late chronic stage with
higher infectiousness.
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Equations for the DI model are
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In both of these models the susceptible popu-
lation is assumed to be homogeneous, and
variations in susceptibility, risk behavior, and
many other factors associated with the dynamics
of HIV spread are neglected. This simplicity
allows us to isolate and examine the di!erences
between the mechanisms captured by the two
models. We also assume that the population we
are studying is an isolated, high-risk, subset of
a larger population. The larger embedding popu-
lation is relatively free of HIV and provides
a constant source of uninfected individuals enter-
ing the high-risk population at a rate kS0. These
models are appropriate for a homosexual popu-
lation of a major city, or for a group of highly
active heterosexual individuals, but might not be
appropriate for populations where there is a sub-
stantial level of contacts between high-risk
groups and lower-risk groups, or where the virus
is spreading primarily between people with fairly
long-term relationships.

When no virus is present in the population, the
population of susceptible individuals, S, has a con-
stant steady state S0. This equilibrium is main-
tained by the constant in#ow of individuals plus
a constant per person rate of out#ow, in which
each individual remains in the population for an
average of k~1 years, where k is the total removal
rate. In the presence of infection, individuals are
infected by HIV at a per capita rate j (t).

For the DI model, the infected population is
subdivided into n subgroups, I

1
, I

2
,2, I

n
. Upon

infection, an individual enters subgroup i with
probability p

i
and stays in that group until becom-

ing inactive in transmission. The rate, l
i
, of leaving

a subgroup depends on behavior changes induced
by HIV-related illnesses, a positive HIV test, or
other factors. This model accounts for the time-
independent di!erences in viral load between indi-
viduals and the di!erences in rates of developing
AIDS that individuals with di!erent viral loads
have [see Hyman et al. (1999) for references].

For the SP model we subdivide the infected
population into subgroups I

1
, I

2
,2, I

n
with dif-

ferent infection stages. Infected individuals enter
the "rst subgroup I

1
and then gradually progress

from subgroup I
1

to subgroup I
n
. We de"ne c
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to

be the average rate of progression from subgroup
i to subgroup i#1, for i"1,2, n!1, and c
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as

the rate at which infected individuals in subgroup
I
n
become sexually inactive or uninfectious due to

end-stage disease or behavior changes. The
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model captures the time-dependence of viral
loads within each individual and the distribution
of times to AIDS seen in populations [see Hyman
et al. (1999) for references].

The rate of infection, j, depends upon the
transmission probability per partner of indi-
viduals in subgroup i, b

i
, the proportion of

individuals in the subgroup, I
i
/N, where

N"S#I, and I"+n
j/1

I
j
, and the number of

partners of an individual per unit time, r. For
both models, a simple random mixing assump-
tion leads to
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For both models we denote the subgroup of
removed people by A. People in A are assumed to
die at a rate d*k.

The relative impact of the group is de"ned by
the relative fraction of individuals being infected
by each group:
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Analysing the stability of the infection-
free equilibrium (S"S0, I

i
"0) gives the

epidemic threshold condition, which de"nes the
reproductive number as

R
0
"rqN bM (5)

for both models. The mean duration of infection,
qN , and the mean probability of transmission per
partner, bM , are de"ned in Table 1 for each model.
In each case, if R

0
(1, the infection-free equilib-

rium is the only equilibrium and is locally asy-
mptotically stable. If R

0
'1, the infection-free

equilibrium is unstable, a small initial infection
will spread until the population converges to
a unique endemic equilibrium (S"S*'0,
I
i
"I*

i
'0), given in Table 1 [see Hyman & Li

(2000), and Hyman et al. (1999) for details].

3. Parameter Ranges

Tables 2}4 show the baseline parameters that
we use in the studies in this paper and the ranges
for those that we vary. Many of these parameters
are the same as those in Hyman et al. (1999). Here
we give a brief review of that information and
more detailed discussions on some parameters, in
particular the number of contacts per partner.

3.1. PARAMETERS COMMON TO BOTH MODELS

3.1.1. ¹otal Removal Rate

The total removal rate, k, is the sum of the
natural death rate, d, and the sexually active



TABLE 2
<ariable parameters: in the sensitivity studies these quantities are varied to determine

the impact that changes in these parameters have on the solution of the models

Description Formula Baseline value Range

Sexually active removal rate a 0.05 year~1 (0.02, 0.2) years~1
Mean duration of infection
(when a"0 in the DI model) qN 12 years (8.6, 19) years
Partner acquisition rate r 5 partners year~1 (2, 10) partners year~1
Contacts per partner parameter g 1.0 (0.8, 1.4)

TABLE 3
Fixed parameters: these parameters were chosen based on the studies and calculations cited in the text,

and do not change as the parameters in ¹able 2 are varied

Description Formula Baseline value

Initial conditions
Initial population size N (0) S0
Initial infected population I

T
(0) 0.01S0

Normalized infection-free equilibrium S0 1

Basic parameters
Natural death rate d 0.02 years~1
Mean duration of infection when a"0 in the DI model qN 12 years

DI parameters
Distribution of the newly infected p (0.05, 0.33, 0.5, 0.12)
Progression rates by group m (0.19, 0.096, 0.058, 0.028)
Relative per contact transmission f (103, 102, 10, 1)zD
Infectivity adjustment factor zD 5.1]10~5

SP parameters
Progression rates by group c (13.0, 0.23553, 0.23553, 0.47)
Relative per contact transmission f (100, 1, 1, 10)zS
Infectivity adjustment factor zS 9.08]10~4

TABLE 4
Derived parameters at baseline: these parameters are derived from the parameters

given in ¹ables 2 and 3

Description Formula Baseline value

Duration of infection qN 7.3 years
Mean probability of transmission per contact fM 0.003
No. of contacts per partner c(r"5) 21.8 contacts per partner

DI parameters
Probability of transmission per partner b (0.68, 0.105, 0.011, 0.0011)
Mean probability of transmission per partner bM 0.053
Reproductive number R

0
1.93

SP parameters
Probability of transmission per contact b (0.87, 0.0196, 0.0196, 0.1802)
Mean probability of transmission per contact bM 0.051
Reproductive number R

0
1.88
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removal rate, a, which is the rate individuals leave
the high-risk population due to both physical
migration and changes in sexual behavior. For
the natural death rate we assume that individuals
in the population are young adults and can
expect to live an average of 50 more years, so
d"0.02 years~1.

The average number of years that people
engage in high-risk behavior is unknown, and
probably varies greatly between populations. We
assume a baseline of 20 years (a"0.05 years~1),
and study how changing a~1 from 5 to 50 years
a!ects our model results. This parameter is often
neglected in models for the spread of sexually
transmitted diseases, but, as we shall see, can play
a key role in determining how fast the HIV virus
spreads. Note that increasing a decreases the
mean time that an individual spends in the sex-
ually active population in di!erent ways for each
model (see the formulas for qN in Table 1). This
means that, even when the two models have the
same reproductive numbers at one value of a, if
everything else is held "xed, and a is changed by
the same amount in both models, they will no
longer have the same R

0
.

3.1.2. Mean Duration of Infection

The mean time from infection to AIDS lies
between 8.6 and 19 years for people in developed
countries and people undergoing treatment
therapies (Longini et al., 1989; Mellors et al.,
1997; O'Brien et al., 1996). All of these studies
keep people in the study regardless of their sexual
behavior, so their data are only applicable when
a"0. We take 12 years as the baseline value for
qN when a"0, in the DI model.

3.1.3. Partner Acquisition Rate and
Number of Contacts Per Partner

While HIV can spread even in populations
with fairly low partner acquisition rates, r [for
example, in African populations in which HIV
has spread, reported partner acquisition rates
may be as low as 1 or 2 per year (Berkeley et al.,
1989), and a study in Bangkok found many of the
infected women had only one sex partner in their
lives (Siriwasin et al., 1998), our model does not
take long-term partnerships into account, and
thus is designed to study high-risk populations
where most partnerships are fairly short term,
and the impact of spread to long-term partners
can and is being neglected. Such a population
might be highly active populations of homo-
sexual men or heterosexuals, or communities of
prostitutes and the clientele which visit them
regularly. In the latter case, we would be neglect-
ing spread from the clientele to their wives and
girlfriends, and spread from these women to
other men. This spread outside the active core
group would have to be calculated separately as
a consequence of the core spread. Early studies of
high-risk homosexual men found averages of be-
tween 5 and 25 sex partners per year [see Hyman
& Stanley (1988) for references and analysis], but
today a more typical high-risk population might
average far fewer new partners per year. We take
the baseline value of r to be "ve partners per year,
and investigate the sensitivity of our model to
values of r ranging from two to ten partners per
year.

The parameter r enters the model both as
a multiplicative factor and through the depend-
ence of the transmission probabilities per part-
ner, b

i
, on the average number of contacts per

partner, c, which in turn depends on the number
of contacts per partner [c"c(r)].

If f
i
is the transmission probability per contact

in group i, the probability that a susceptible indi-
vidual will not be infected by a single contact
with an infected individual is 1!f

i
. Hence, the

probability that a susceptible individual will
avoid infection when they have c(r) contacts with
an infected partner is (1!f

i
)c(r) (Ackerman et al.,

1984), and the probability that a susceptible indi-
vidual will fail to avoid infection when he/she has
an infected partner is

b
i
"1!(1!f

i
)c(r). (6)

This is the probability of transmission per
partner from an infected person in group i.
Note that eqn (6) is an improvement over the
approach used to estimate b

i
in our previous

paper (Hyman et al., 1999), and will change our
results somewhat by decreasing the importance
of the most infectious groups relative to the other
groups.

Sexual behavior surveys indicate that people in
long-term relationships have an average of 1}3
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contacts per week with their partner and that
people with hundreds of partners per year rarely
have multiple contacts with a typical partner.
Thus, the average number of contacts with each
partner would be a decreasing function of the
number of partners per year.

Our functional choice for c(r) is somewhat
arbitrary because of the lack of sociological data
on this issue. A simple decreasing function of the
partner acquisition rate that gives approximately
two contacts per week for people with one part-
ner per year, and decreases to about one contact
per partner as r gets large is

c (r)"104r~g#1, (7)

where g is a parameter which controls how fast
this function decreases.

We take g"1 at baseline, which means that for
small values of r people have approximately
2 contacts per week [e.g. if people have one new
partner every 2 years, then r"0.5, and with
g"1 we have that c(0.5)"209 total contacts]
and for r"20 partners year~1 they are aver-
aging slightly more than six contacts with each
partner, and averaging about 120 contacts per
year. On the other hand, if g(1 then people in
relationships which last longer than a year have
fewer than two contacts per week with their part-
ner, and people with more than one partner per
year have more contacts with them than in the
g"1 case. If g'1, people with less than one new
partner per year average more than 2 per week,
and when r'1 people have fewer contacts with
each partner than when g"1. This dependence
of c (r) on r and g is shown in Section 5.2, Fig. 6,
where at baseline c(5)"21.8 contacts per partner.

3.2. TRANSMISSION PROBABILITY

Hyman et al. (1999) used a single parameter
fM for the mean transmission probability per
sexual contact, and determined the population's
average probability of transmission, bM , using the
formula 1!(1!fM )c(r). The b

i
for each infected

population group was proportional to the rela-
tive viral load of its group, and was varied in such
a way to keep bM "xed.

Recognizing that it is the transmission prob-
ability per sexual contact for people in group i, f

i
,

which is proportional to a person's viral load,
rather than the actual probability of transmission
per partner, here we determine the b

i
di!erently.

We "x fM and determine the f
i
such that they give

this value for fM . Then the probability of transmis-
sion per infected partner from group i is given by
eqn (6), and the b

i
are given from the f

i
by

formula (6).
The mean transmission probability per contact

fM for the DI model is

fM "
n
+
i/1

p
i

q
i

qN
f
i
, (8)

and for the SP model it is

fM "
n
+
i/1

q
i

q
i

qN
f
i
. (9)

The data which we present below give the
average viral levels for each group. The actual
infectiousness per contact which goes along with
that viral level is unknown, but we assume that
the relative infectiousness goes up by the same
amount as the viral load does. This allows us to
determine the f

i
except for a multiplicative con-

stant which is the same for every f
i
in the model.

This multiplicative constant is then determined
from formulas (8) and (9) by specifying fM .

Estimates of fM range from 0.0003 (lowest value
estimated for female-to-male transmission) to
0.08 (highest value estimated for male-to-male
transmission) (Royce et al., 1997). Hyman et al.
(1999) showed that the reproductive number and
transient dynamics of the epidemic are very sensi-
tive to f. We found that both models are so
sensitive to f that it only made sense to study
a small fraction of its range. At the bottom of the
range, R

0
;1 and the epidemic is below thre-

shold. At the top of f's range, the epidemic is
rapid and devastating (R

0
A1). Here fM "0.003 at

baseline.

3.3. OTHER PARAMETERS

The remaining parameters for the DI model
were obtained from the HIV progression study
reported in O'Brien et al. (1996), following which
we divide the infected population into four
groups, ranging from the highest viral load to the
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lowest. We assume a connection between infec-
tivity and viral load, so that, like the average level
of viral particles in the serum, each group's
infectivity decreases by a factor of 10 from the
one before it. We use values from this paper to
obtain

p"(0.05, 0.33, 0.5, 0.12)T,

fD"(1000, 100, 10, 1)TzD,

where the scalar parameter zD is to be chosen so
that the mean probability of transmission per
contact is 0.003. Here bold letters are used to
denote the vector parameters and the vectors are
de"ned using matrix transpose notation.

Hyman et al. (1999) showed that qN is equal to
12 years when a"0 when m"(0.19, 0.096, 0.058,
0.028)T, where the relative values of the progres-
sion rates were obtained from O'Brien et al.
(1996). When we account for changes in sexual
activity, the mean value for qN at baseline becomes
7.3 years.

From eqn (8), the above parameter choices
give fM "59.0zD. By specifying fM "0.003,
zD"5.1]10~5. We then hold this value for zD
"xed as we vary other parameters, since we as-
sume that the probability of transmission per con-
tact is una!ected by those other parameters. fM thus
becomes a derived parameter, shown in Table 4.

Here we choose the duration of each SP stage
to ensure that both models have the same value
for qN at baseline and to "t what is known about
them. The initial highly infectious stage lasts
4 weeks, the "nal moderately infectious stage
lasts 2.13 years, and the middle two stages each
last 4.25 years: c

1
"13 years~1, c

2
"c

3
"

0.2353 years~1, c
4
"0.47 years~1. Setting a

to be its baseline value of 0.05 years~1 gives
qN"7.3 years.

Given the data on viral loads (Jacquez et al.,
1994; Piatak et al., 1993; Quinn, 1997), we assume
for the SP model that

fS"(100, 1, 1, 10)TzS.

From eqn (9), this gives fM "3.31zS. Specifying
fM "0.003 then allows us to calculate that
zS"9.08]10~4. This gives the f

i
for the SP

model, which we hold "xed for all calculations in
this paper. fM then becomes a derived parameter
for some of our analysis. Table 3 shows the para-
meters which do not vary in any simulation, and
Table 4 shows the parameter values at baseline
for all derived parameters.

4. Initialization Procedures for the Models

An added complication in any model with in-
fected subgroups is the dependence of the behav-
ior and the timing of the transient solutions of the
epidemic model on the initial distribution of the
infected populations among the subgroups. We
will demonstrate that, even when the total num-
ber of infected individuals is "xed, the timing of
the epidemic can be shifted by up to 25 years by
varying the distribution of the initial infected
population. This important observation is often
overlooked in simulation studies comparing
multigroup models. We develop a robust, system-
atic procedure for determining the initial distri-
bution of the infected population when R

0
'1

based on the progression of a natural epidemic
that sets the timing of di!erent multigroup
models and allows them to be quantitatively
compared.

Let f
i
"I

i
(0)/I(0). The total initial infected

population, I (0)"+n
i/1

I
i
(0), is "xed (in our case,

we take I(0)"0.01) and the goal is to prescribe
a robust procedure to de"ne the fractions, f

i
,

where +n
i/1

f
i
"1.

4.1. THE INITIALIZATION METHODS

One of the simplest ways to de"ne these
fractions is to use the equilibrium fraction initia-
lization procedure (EFIP). In this approach the
relative fractions are de"ned based on the distri-
bution of the infected groups at the endemic
equilibrium. That is, f

i
"I*

i
/I*, where I*

i
and I*

are given in Table 1. Using the formulas in Table
1, we obtain f

i
"p

i
qN
i
/qN for the DI model and

f
i
"q

i
qN
i
/qN for the SP model. This method is

simple to implement and e!ective when R
0

is
near one. However, in other cases this initializa-
tion can generate a rapid initial transient in the
solution.

For models of the spread of infectious agents
such as HIV, which have been spreading into
populations that were originally free of this
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disease and thus have an initial background level
of zero infections, we propose two procedures for
de"ning the f

i
when R

0
'1 based on the idea that

in nature the epidemic would have spread into
the population from only a few infected indi-
viduals. The epidemic then grows from this small
seed until by the time a noticeable number of
individuals are infected, a natural balance
between the infected subgroups is reached (thus
de"ning f

i
). When R

0
'1, then the numerical

preinitialization procedure (NPP) is a simple ap-
proach to approximating the natural balance in
the population that exists when an epidemic
started in the past. In this procedure, we distrib-
ute the initial infected population based on what
it would be if a very small initial infected popula-
tion was introduced in the distant past and grew
to infect a given percentage of the population.

For example, to use the NPP simulation to
distribute a 1% initial infection rate, the pre-
initialization simulation is started with a much
smaller infected population, say 0.01% of the
population infected, and the equations are integ-
rated until 1% of its population has become
infected. This occurs at some time tP (which de-
pends on how we initialized this pre-initialization
simulation). At time tP we stop the simulation
and use the current distribution of the infected
population in the pre-initialization simulation to
de"ne the relative fraction of the infected popula-
tion in each group for the actual simulation that
we study. Thus, f

i
"IP

i
(tP)/IP (tP), where the

superscript P denotes the solution and ending
time of the pre-initialization simulation. In nu-
merical experiments we observed that the result-
ing initial conditions are almost independent of
the distribution used in the pre-initialization
simulation.

Even though the numerical pre-initialization
procedure is robust for our two models in that it
is insensitive to how the initial infected popula-
tion is distributed, it still contains heuristic par-
ameters and can be complicated to implement
numerically. We now de"ne an approach, that we
call the natural initialization procedure (NIP), to
de"ne the distribution of the initial infected
population, based on the instantaneous balance
between the infected groups at t"0.

Suppose that we move our solution forward in
time only by a short period of time te and then use
this new distribution which the equations have
naturally found to rede"ne f

i
. Since te is small, we

can linearize this solution about t"0. To do this,
we de"ne functions g

i
(t)"I

i
(t)/I(t), where the

constraint +n
i/1

g
i
(t)"1 for all t holds by de"ni-

tion. If our "rst guess for f
i

is f 1
i

, our "rst set
of solutions to the model we are studying
gives g1

i
(t), with the initial condition g1

i
(0)"f 1

i
.

Linearizing gives

g1
i
(t)+f 1

i
#tgR 1

i
(0) :"h1

i
(t), (10)

where gR 1
i
(0)"(d/dt)g1

i
(t) D

t/0
, and this quantity

is found by substituting the initial conditions
I(0)"I

0
, S (0)"S

0
, I

i
(0)"f 1

i
I (0).

We then use this approximation at a small and
arbitrarily chosen value t"te to de"ne a new
initial condition, f 2

i
"h1

i
(te), and repeat this

procedure, "nding a solution g2
i
(t) with initial

conditions I(0)"I
0
, S (0)"S

0
, I

i
(0)"f 2

i
I
0
, ap-

proximating the solution for small times by
h2
i
(t)"f 2

i
#tgR 2

i
(0), and obtaining f 3

i
"h3

i
(te).

Continuing in this manner with the I
0

and
S
0

remaining the same every time, we have an
iteration scheme for f

i

f j`1
i

"f j
i
#tegR ji (0). (11)

Now suppose that the sequence M f j
i
N con-

verges to f *
i

and the solution for the I
i
(t) which

has f *
i

as its initial condition is I*
i
. Then

lim
j?=

gR j
i
(0)"0. Since

gR j
i
(t)"

d
dt A

Ij
i
(t)

Ij(t)B"
IQ j
i
(t)Ij (t)!IQ j (t)Ij

i
(t)

Ij(t)2
, (12)

IQ *
i
(0)I*(0)"IQ * (0)I*

i
(0).

This implies that f *
i

satis"es the nonlinear
equation

f *
i
"

I*
i
(0)

I*(0)
"

IQ *
i
(0)

IQ * (0)
. (13)

The right-hand side (r.h.s.) of this equation,
IQ *
i
(0)/IQ *(0), is a function which depends on the

model equations, the choice of initial conditions
for I

0
and S

0
, as well as the f *

i
.

We solve the nonlinear equations (13) for f *
i

by
a simple function iteration. Let f *k

i
denote the
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k-th approximation to f *
i

, and Ik
i
(0)"f *k

i
I(0).

Then

f *k`1
i

"h f *k
i

#(1!h)
IQ k
i
(0)

IQ (0)
,

where h3(0, 1) is a relaxation parameter. In all
cases we have tested, this scheme converges to
a root of eqn (13) when h is chosen su$ciently
close to 1.

To monitor the convergence of the iteration,
we noted that eqn (12) implies that all of the
ratios

IQ *
i
(0)

I*
i
(0)

"

IQ *(0)
I*(0)

are equal at convergence. We found this to be
an excellent convergence test when the iteration
converged slowly.

4.2. COMPARISONS OF THE DIFFERENT

INITIALIZATIONS

In Figs 2 and 3, we compare the results from
four di!erent ways of distributing the initial infec-
ted populations. These "gures demonstrate that
di!erent initial distributions of even a small infec-
ted population can hasten or delay the onset of
the epidemic in the DI model by over 25 years.
FIG. 2. Plot of the susceptible and infected populations wi
group with the largest o*

i
. Dash}dot: all initially in the group w

and NIP methods. Even a small infected population can haste
25 years. Surprisingly, the onset of the epidemic in the SP mo
Surprisingly, the onset of the epidemic in the SP
model for the same conditions varied by only
4 years.

In all of these examples we use the baseline
parameters given in Tables 2 and 3, and begin the
simulation at t"0 with 1% of the population
infected, 99% susceptible and a total population
of S0"N(0)"1 (I (0)"0.01, S (0)"0.99). We
investigate the impact of distributing the initial
population with one of the following methods:

1. All of the infections are initially in the group
with the largest relative impact o

max
, at equilib-

rium. For this fast starting situation the para-
meters are f"(0, 1, 0, 0) for the DI model and
f"(0, 0, 0, 1) for the SP model.

2. All of the infections are initially in the group
with the smallest relative impact, o

min
, at equilib-

rium. For this slowly starting situation, the para-
meters are f"(0, 0, 0, 1) for the DI model and
f"(0, 0, 1, 0) for the SP model.

3. The EFIP method.
4. The NPP method, with EFIP initialization

used for the pre-initialization. (For this example
the NIP and NPP solutions agreed within a frac-
tion of 1%.)

The variability in the initial progression of the
epidemic shown in Figs 2 and 3 demonstrates
how important it is to make a well-reasoned
th di!erent initial distributions. Solid line: all initially in the
ith the smallest o*

i
. Dashed: EFIP method. Crossed lines: NPP

n or delay the onset of the epidemic in the DI model by over
del for the same conditions varied by only 4 years.



FIG. 3. Plot of the infected populations for the "rst 6 months with di!erent initial distributions. Solid line: all initially in the
group with the largest o*

i
. Dash}dot: all initially in the group with the smallest o*

i
. Dashed: EFIP method. Crossed lines: NPP

method.
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choice for the initial distribution of the infected
population when studying models with multiple
infection groupings. These simulations were all
run with identical parameters and the same total
initial infected population of 1%. Figures 2 and 3
indicate that using the EFIP the epidemic pre-
ceded the NPP and NIP solutions by less than
a year, but we caution against assuming that this
result will hold for other models, or even for these
two models when R

0
A1.

To analyse the impact of the initialization
procedure on the timing of the epidemic, we "rst
focus on the initial growth rates. These initial
growth rates are the slopes of the solution curves
at t"0 in Figs 2 and 3. Initial growth for epi-
demic models which are systems of ODEs was
discussed in Jacquez & Simon (1990) and is well
known to depend on the initialization of the
model. Note that even though all parameters and
the total number of initial infected people are the
same in each simulation, because the f

i
are not

the same the initial slopes can be di!erent. For
the DI model,

dI(t)
dt K

t/0

"Ar
n
+
i

b
i
f
i

S (0)
N (0)

!k!
n
+
i

l
i
f
iB I (0)

and for the SP model

dI(t)
dt K

t/0

"Ar
S(0)
N(0)

n
+
i/1

b
i
f
i
(0)!k!c

n
f
n
(0)B I (0).
The initial slopes for the three numerical simu-
lations where f

i
are de"ned explicitly are given in

Table 5. From this table we see that there are
huge di!erences in initial growth rate, depending
upon how the infected population is initially dis-
tributed between the di!erent groups. If the early
infections were in the most infectious subgroup,
the epidemic can take o! quickly and get a head
start over the situation where all the infections
are in the least infectious group. In the DI model,
the simulations indicate that this head start is
maintained, but in the SP model, much of it is
quickly lost.

The initialization f
i
's for the NPP depend on

the pre-initialization method used. In practice,
we found that the f

i
's obtained by using di!erent

pre-initialization schemes di!ered from each
other and the NIP method by less than 0.0004.
Thus, for this example, the NPP method is very
insensitive to the distribution of the infected
population in the pre-initialization simulation.
Even though the EFIP is signi"cantly di!erent
from the other methods for this example, as R

0
approaches one the f

i
in all of these methods

converge to the same values.
Because of this extreme sensitivity to the initial

distributions, we have demonstrated that one has
to be careful drawing conclusions between the
timing of the epidemic of two di!erent models
when there are multiple subgroups. In particular,
when comparing the SP and DI models, the in-
itial distributions of the infected population may



TABLE 5
¹he initial slopes can di+er depending upon the initial distribution
of the infected population. In fact, the slope for the DI model when
the initial 1% infected population is all in the least infectious group
(group 4, o

min
) is initially negative before the epidemic ,nally takes

o+. Note that the f
i

for the NPP and NIP methods are extremely
close, but signi,cantly di+erent than the EFIP method

Model Method f IQ (0)

DI o
max

(0.0000, 1.0000, 0.0000, 0.0000) 0.00337
DI o

min
(0.0000, 0.0000, 0.0000, 1.0000) !0.00093

DI EFIP (0.0263, 0.2719, 0.5343, 0.1675) 0.00116
DI NPP (0.0357, 0.3037, 0.5210, 0.1396) 0.00158
DI NIP (0.0358, 0.3039, 0.5209, 0.1394) 0.00158

SP o
max

(0.0000, 0.0000, 0.0000, 1.0000) 0.00355
SP o

min
(0.0000, 0.0000, 1.0000, 0.0000) 0.00026

SP EFIP (0.0104, 0.4847, 0.3635, 0.1414) 0.00115
SP NPP (0.0188, 0.5904, 0.2982, 0.0926) 0.00135
SP NIP (0.0189, 0.5900, 0.2983, 0.0928) 0.00135
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be as important in the course of the epidemics as
the di!erences between the models. The NIP
eliminates this problem, and we use it for all of
the remaining simulations in this paper.

5. Sensitivity Studies

Hyman et al. (1999) presented some baseline
simulations for these models, and showed that
the size and speed of the epidemic is sensitive to
the choice of fM . In the SP model the relative
impacts, o

i
, early in the epidemic are also sensi-

tive, with group 1 causing more and more of the
early infections as fM is increased. In this section,
we further explore the sensitivity of the DI and
SP models to variations in a, r and g. We use the
baseline parameters from Tables 2 to 4 unless
otherwise stated. First, we examine the depend-
ence of the solutions on the sexually active re-
moval rate of people in and out of the susceptible
population, and then we show how the relation-
ship between the average number of partners per
unit time and the number of contacts per partner
in a homogeneous randomly mixing population
can a!ect the epidemic.

5.1. SENSITIVITY TO THE SEXUALLY ACTIVE

REMOVAL RATE

Often sexually transmitted disease epidemic
models neglect the impact of people moving in
and out of the sexually active population. In our
model this would be equivalent to assuming that
the sexually active removal rate, a, is 0. However,
it is likely that in many populations the average
person does not maintain high-risk behaviors for
long periods of time. If people spend less time in
the sexually active population, they have less
time to either become infected or to infect, and
thus the size and extent of the epidemic should
decrease as a increases. Behavioral intervention
programs attempt to a!ect a by convincing
people to leave the high-risk population. These
intervention programs do this by attempting
to convince people to either abstain from sex
altogether, or else to have few partners, and to
be careful to choose low-risk partners, through
the strategy of &&know your partner''.

In this section, we hold all parameters in
Tables 2 and 3 at their baseline values, expect a.
Thus p

i
, l

i
, and c

i
are held "xed, but qN varies,

decreasing as a increases. We also assume that
the probability of transmission per contact in
each group is not a!ected by behavior changes,
so that the f

i
and b

i
of both models do not vary.

However, the equations for the mean transmis-
sion probabilities imply that fM and bM change as
a varies, and because there are so many ways in
which a comes into play in their expressions, it is
not possible to predict how they depend on a.
Since the reproductive number depends on both
qN and bM , it is not possible to predict if it will



FIG. 4. The reproductive number R
0
as a function of a is shown by solid lines for the DI model on the left and the SP model

on the right. The dashed lines show the mean duration of infection, qN , divided by four and dash}dot lines shown 20bM . Note that
qN decreases more than R

0
because bM is not held "xed.
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increase or decrease with a. Figure 4 shows how
qN , bM and R

0
vary with a for the two models.

Notice that bM changes as a function of a di!er-
ently for the two di!erent models, being
monotonically increasing in the DI model, and
nonmonotonic in the SP model. Both R

0
and

qN are decreasing and concave upward.
In Fig. 5, we show the di!erence between

having a mean time in the sexually active popula-
tion of 10 years vs. 20 and 50 years. As expected,
the epidemic becomes more severe and dramatic
as a decreases, and people stay in the population
for longer and longer periods of time. There are
fewer new, uninfected people coming into the
population to replenish the susceptibles, and
those who are in the population have a greater
chance of becoming infected and infecting others
before they leave it.

For the DI model, group 2 always causes the
most spread, with group 1 causing the second
largest number of infections. Thus, the relative
importance of each group in spreading the epi-
demic changes little with the removal rate vary-
ing, although the group with the shortest life
expectancy and highest infectiousness, group 1,
becomes slightly more important as the removal
rate increases.

In the SP model the initial values of o
i

are
insensitive to changes in a, but a does in#uence
which groups cause the most infections once the
epidemic is established. Groups 1 and 4 cause
most of the infections at large a during the entire
epidemic, with group 4 causing slightly more
than group 1, especially as time goes on, and
group 2 causing nearly one-quarter of the infec-
tions throughout the whole epidemic. At small a,
group 1 is important only in the early epidemic,
eventually becoming the least important group,
and group 4 comes to dominate the spread. Since
group 4 is the group most likely to be identi"ed
due to the duration of their infection, this would
imply that this more severe epidemic might be
controlled more easily by screening programs
than the less severe epidemic in a less stable
population.

5.2. SENSITIVITY TO THE PARTNER ACQUISITION RATE

AND THE NUMBER OF CONTACTS PER PARTNER

Campaigns against the spread of HIV gener-
ally target two other aspects of the spread besides
the time spent in the sexually active population:
the infectiousness of each contact (for example,
through encouraging condom use or needle
sterilization) and the partner acquisition rate.
Hyman et al. (1999) showed that the epidemic
was extremely sensitive to changes in the infec-
tiousness of individual contacts. This is true for
both models and implies that condom use, strain
variations, and even di!erences in mucosal health
can have a big impact on how fast HIV spreads,
even when the di!erences in these factors between



FIG. 5. The epidemic spreads faster as a increases and all other parameters are held "xed. Solid lines are a"0.02 years~1,
dash}dot lines are a"0.05 years~1, and dash}dash lines are a"0.1 years~1. For the infection-rate plots we leave o! the
middle, baseline, case of a"0.05 years~1 for readability. We see that the speed and intensity of the epidemic are dramatically
changed by changing a for both models. Note particularly the large di!erence between assuming a mean stay of 10 years and
a mean stay of 20 years. In the DI model the relative impact of the groups is not a!ected much by a, but the SP model shows
a dramatic change in who is infecting people once the epidemic is mature. Although it does not change the o

i
in the early

epidemic, the longer people stay in this high-risk population, the less important those who are recently infected (groups 1 and
2) become to the long-term spread, and the more important those in stage 4 become. In fact, with a"0.02 years~1, over 50%
of the spread after 40 years is caused by group 4.
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populations are small. Here we examine the
sensitivity of HIV spread to the other target
of intervention programs, the partner acquisition
rate.

As we discussed in Section 3, when people have
fewer partners they will most likely have more
contacts with each partner. This assumption de-
creases the sensitivity of our models to the part-
ner acquisition rate, compared to models which
assume a "xed probability of transmission per
partner independent of r, because our assumptions
about c(r) cause the probability of transmission
per partner to decrease as the number of partners
increases.

The impact of this decrease in the number of
partners for three di!erent choices of g in a popu-
lation with a single infected group (n"1) that
has f"0.003 is shown in Fig. 6. This "gure also
shows how our choice of c (r) a!ects the reproduc-
tive number in this homogeneous population as
r varies. The reproductive number for this single
group model is R

0
(r)"rqN (1!(1!f)104r~g`1).

These plots show that it is not only possible for
the reproductive number to increase very slowly



FIG. 6. The functionality of c(r) a!ects the behavior of the epidemic. The "rst plot shows c(r)"104r~g#1 for three
di!erent choices of g, and the other three plots show the impact of these three choices of g on the probability of transmission
per partner and the reproductive number. In each plot dash}dot is g"0.8, the solid line is the baseline choice of g"1.0 and
dash}dash is g"1.2. In all cases, we have taken f"0.003. Although c(r) and b (r) are similar for the three cases, the
reproductive number, for which we have used the DI baseline value of qN"7.3 years~1, varies enormously between the three
choices. In order to see the region where R

0
is non-monotonic with g"1.2, we have magni"ed that region in the fourth plot.
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once r'1, as in the g"1.0 case, but R
0

could
even be non-monotonic in r. In the g"1.2 case
the reproductive number increases with r for
r(0.95 partners year~1, but then it decreases for
r between 0.95 and 11.9 partners year~1, after
which it increases again. In the appendix we show
that R

0
can decrease as r increases only when

g'1 and f(1!(1/g) exp((g!1)/g). This im-
plies that, if the number of contacts per partner
drops rapidly enough as the number of partners
per unit time increases, the epidemic may spread
more easily in a population where people have
few partners (small r) than in one with moderate
values of r.
In Fig. 7, we explore this possibility in more
detail, and demonstrate that there is a small drop
in R

0
between this local maximum and minimum.

This small drop in R
0

can be signi"cant if there
are some values of q, f and g for which the epi-
demic is above threshold when r is in the range of
1}2 partners per year and below threshold as
r increases. This situation is illustrated when
g"1.2 and f"0.0017 in Fig. 8. A more common
situation is when R

0
is insensitive to changes in

r and reducing the number of partners has only
minimal e!ect on R

0
. In these situations control

programs which rely solely upon decreasing the
number of partners might not be e!ective if as



FIG. 7. This "gure explores the parameter ranges for which R
0

has a region in which it decreases as r increases. In the "rst
plot, we see the parameter values of g and f for which this occurs: all values below the curve. The second plot shows the
r values for which the maximum and minimum in R

0
happen as a function of f for g"1.2 and 1.4. Note how much of the

range of r these curves encompass. We see that the curve in the "rst plot is de"ned by the places where r
$

converge with each
other. The bottom left plot then gives the maximum and minimum values of R

0
as f varies for the two values of g and

qN"7.3 years. We see the di!erences between these values in the last plot. These bottom two plots indicate that R
0

varies only
over a small range for these cases.
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people decrease their partner acquisition rate
they also increase the number of contacts they
have with each partner.

Given the importance of the implication that
convincing people to reduce their partner ac-
quisition rates might not be an e!ective way to
control the epidemic, it is important to determine
if g'1 is a realistic assumption. Looking at the
graphs of c(r) for various values of r and g, it is
di$cult to pick the values out, so here are some
special cases:

f if g"1, c(2)"53, c(5)"22, c(10)"11 and
c(20)"6,
f if g"0.8, c(2)"61, c (5)"30, c(10)"17 and
c(20)"10,

f if g"1.2, c(2)"46, c (5)"16, c(10)"8 and
c(20)"4.

Although we do not have data to directly
support our parameter choices, it seems more
reasonable to us that a person with "ve new
partners a year averages 16 or fewer contacts
with each partner (g*1.2) than that they aver-
age more than 16 contacts with each partner
(g(1.2). This implies that many high-risk popu-
lations will be in parameter ranges where reduc-
ing partner acquisition rates is not the most
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e!ective way to control the epidemic, unless they
can be reduced to very low levels.

These analytical results hold only when there is
a single infected group, and change in the four
group models, each of which has a di!erent f

i
and

a b
i
which varies with r and g. Numerically, we

observe that the bM for each model varies some-
what less with g than in the homogeneous case,
and the reproductive number is monotonic in
r for g"0.8, 1.0 and 1.2 when all other para-
meters are held at baseline. However, if g is
FIG. 9. The sensitivity of the DI model's reproductive numb
acquisition rate and the functional form of the number of con
groups. Note that for the cases where g'1, R

0
is almost inde

FIG. 8. The reproductive number can be a nonmonotonic
function of the partner acquisition rate. Here g"1.2,
f"0.0017, and everything else is the same as in Fig. 6. For
this case the epidemic spread at small r but dies out when r is
greater than "ve partners per year.
increased to 1.4, R
0

is no longer monotonic. Also,
at g"1.2, the reproductive number changes very
slowly with r once r is greater than 4, while at
g"1.0 it is increasing more rapidly than for the
homogeneous case. Thus, it takes a greater func-
tional decrease in contacts per partner with r to
get the e!ects seen in a homogeneous population.
These results are shown in Fig. 9 for the DI
model, and the results for the SP model are
nearly identical.

Note, however, that even when the reproduc-
tive number is insensitive to changes in r, it is
possible that other aspects of the dynamics are
sensitive. We examine this by taking the two
cases g"1.0 and 1.2. For the g"1.2 case the
reproductive number is monotonic in r, but
changing fairly slowly for r'1. We hold all
other parameters at baseline and vary r. Our
numerical simulation results are shown in Figs 10
and 11 for both models. We studied the three
cases of r"2, 5, and 10 partners per year. In both
models, the epidemic is much faster and more
severe as r increases, and the change is greatest
for r going from 2 to 5. For our non-homogene-
ous population, the reproductive number in the
DI model goes from 1.48 at r"2 partners per
year to 1.86 at r"5 partners per year. It reaches
2.15 at r"10 partners year~1. The SP model has
a similar increase in R

0
. It is well known that

when the reproductive number is close to 1, even
small changes in parameters can lead to a large
er and probability of transmission per contact to the partner
tacts per partner for the case we study in the paper of four
pendent of r for r'1.



FIG. 10. The sensitivity of the two models to the partner acquisition rate with all other parameters held at baseline, and
c(r)"104r~1#1. Solid lines: r"2; dash}dot lines: r"10; dash lines: r"50. (r"10 case not shown in the o plots for
readability) Note that while both models do show an increase in severity of the epidemic with increased r, these are extremely
di!erent population behaviors, and we might expect much more change than this. Note also that while the order of the relative
impact of each group in the DI model remains the same (although group 1 becomes more important and group 2 less
important as r increases), in the SP model, the importance of group 1 to the early epidemic increases dramatically with
increased partner acquisition rates. We would expect this, since people can only transmit the infection if they acquire a new
partner during the very short newly infected period.
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change in epidemic behavior, and that appears to
be the case here.

This dramatic change in behavior is evident
in the plots of the relative impact of the
groups. In the DI model, when r is small, group
2 causes over 60% of the infections throughout
the entire simulation, and group 1 causes most
of the rest. At the larger partner acquisition
rate of ten partners per year, group 1 becomes
much more important, despite its shorter life
expectancy.

For the SP model, the change is so dramatic
that it is di$cult to even make a clear
comparison. At the larger partner acquisition
rate, nearly all of the early infections are caused
by the just-infecteds, while in the less active case
group 4 is the main transmitter throughout the
entire epidemic.

The reproductive number shown in Fig. 6 is
sensitive to our functional choice of c(r), a func-
tion about which very little is known in any
population. To investigate the sensitivity of the
transient dynamics of the epidemic to c(r), we
"xed r"5 and varied the number of contacts per
partner. We choose the values of c to correspond
to the three di!erent functions of c(r, y) shown



FIG. 11. The sensitivity of the two models to the partner acquisition rate with all other parameters held at baseline, and
c(r)"104r~1.2#1. Solid lines: r"2; dash}dot lines: r"10; dash lines: r"50. (The r"10 case is not shown in the o plots
for readability) Note that while both models do show an increase in severity of the epidemic with increased r, these are
extremely di!erent population behaviors, and we might expect much more change than this. Note that the changes in the
relative impacts are similar to those seen in Fig. 10.
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in Fig. 6, which give c"16, 22 and 30 average
contacts per partner.

In Fig. 12, we show that the fractions infected
by di!erent groups in the DI model change very
little as c varies, but there is a big change in the
fractions infected by the di!erent groups in the
SP model early in the epidemic. As the number of
contacts per partner increases, the probability of
transmission per partner increases, and the newly
infected individuals (group 1) play more and
more of a role in the "rst 10 years of the epidemic,
with the long-term infected individuals (group 4)
playing less and less of a role. With few average
contacts per partner, the largest group of infec-
tions are caused by group 4, while with more
average contacts per partner, the early epidemic
is almost entirely driven by group 1. The frac-
tions infected by the two middle groups are also
a!ected, but not nearly as dramatically.

6. Summary and Conclusions

In this paper, we have studied a number of
important issues with the DI and SP models, and
shown the sensitivity of the transmission dynam-
ics to the following:

f Initial conditions: the early epidemic in multi-
group models is extremely sensitive to the
initial distribution of the infected populations



FIG. 12. The sensitivity of the two models to the number of contacts per partner. Here all parameters are at baseline, except
c. Solid lines are for c"30 (g"0.8), dash}dot lines for c"22 (g"1.0) and dash lines for c"16 (g"1.2) (in the o plots,
c"22 is not shown for readability). Note that the epidemic gets much more severe and rapid as c increases. The groups
causing most of the infections in the DI model remain groups 1 and 2, but the interior dynamics of the SP model change
dramatically. Group 4 causes the largest fraction of the infections at the smaller value of c, and group 1 causes the largest
number of early infections at the largest value. Group 2 is important, causing up to 26% of infections but group 3 never causes
more than 15% of infections.
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among the subgroups, and this early variation
may be maintained throughout the epidemic.
This sensitivity can be dealt with by using the
NIP or the NNP to approximate the natural
initial conditions.

f Sexually active removal rate: as the movement
of people in and out of the susceptible popula-
tion increases, the epidemic slows because an
infected person is not around as long to spread
the disease. This often ignored rate must be
accurately accounted for before a model is used
for quantitative predictions or used to help
guide control e!orts.
f Partner acquisition rate: by building in the as-
sumption that people with many partners have
fewer contacts per partner than people with few
partners, we found that the epidemic is less
sensitive to the partner acquisition rate than
one might expect. Prevention campaigns which
focus solely on encouraging people to have
fewer partners may have minimal impact on
the epidemic.

f Number of contacts per partner: since the prob-
ability of transmission of HIV per contact is
low, the epidemic is sensitive to our assump-
tions about the number of contacts per partner.
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One can argue that the epidemic is as sensitive
to this quantity as it is to the number of part-
ners per year.

Our simulations demonstrate that the early
behavior of both our multigroup models can be
di!erent, depending upon how we distribute the
initial population between infected groups. It is
obvious that conclusions cannot be drawn from
numerical simulations of models with multiple
infected groups unless the initial conditions have
been chosen carefully. In a real-world epidemic,
one or a few people would bring the infection in,
and it would spread outward from there, but
public health o$cials would not notice and begin
to study the epidemic until it has reached a
certain size. This concept led us to the idea of
approximating the natural initial conditions.

The sexually active removal rate has been
neglected in most models of the spread of sexual-
ly transmitted diseases. This is not important
when studying a disease which has a short incu-
bation period, like gonorrhea, but its e!ects are
large given the long duration of HIV infection.
Many factors bring people in and out of a given
high-risk population, including the physical mi-
gration of people in and out of a population, such
as the gay population in a large city, and behav-
ior changes that occur as individuals age or "nd
long-term partners and settle down. We have
examined only the possibility that infected indi-
viduals leave our population, but there is certain-
ly also a possibility that infected individuals enter
it from other populations.

We argue that when people have fewer part-
ners, they are likely to have more contacts with
each partner. Given this, lowering the partner
acquisition rate does not have as large an e!ect
on the spread of HIV as one might expect. Part-
ner acquisition rates may have to drop to very
low levels before the disease spread is stopped.
The epidemic is more sensitive to the infectious-
ness per contact (Hyman et al., 1999). This im-
plies that controlling the epidemic by convincing
people to use condoms would have more impact
than controlling it by convincing people to have
fewer partners. We also showed that the epidemic
is fairly sensitive to our assumptions about how
many contacts people have per partner. It makes
a signi"cant di!erence to the spread of the
epidemic if people with "ve or so partners per
year are having an average of 16 contacts with
each partner or an average of 22 contacts. Obvi-
ously, it would make even a greater di!erence if
they would only have "ve contacts with each
partner. Thus, attitudes and behaviors towards
partners are factors which should be taken into
consideration in prevention programs.

These studies raise questions about how e!ec-
tive contact-tracing programs are in controlling
treatable sexually transmitted diseases. These
programs ask infected individuals to name
people with whom they have had contact and
where the virus may have been transmitted dur-
ing the contact. These potentially infected people
are then contacted by a trained person and en-
couraged to be tested. The e!ectiveness of the
program in identifying the infected population
depends upon the etiology of the underlying dis-
ease. If the underlying epidemic is close to the SP
model, then contact tracing will identify most
individuals only after they are past the initial
most infectious stage and are no longer as likely
to transmit the infection. For those situations
where most infections are being transmitted by
group 4, this may not be a problem, but in many
situations substantial numbers of cases are being
caused by group 1. If, however, the underlying
epidemic is closer to the DI model, where some
individuals are highly infectious during the entire
course of the infection, then these superspreaders
will be quickly identi"ed by contact tracing. We
will explore these issues in a later paper by
Hyman et al.
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Appendix

Relationship between R0 and r

In this appendix we examine the behavior of
the reproductive number for a single-infected-
group population, with c(r) given by eqn (7), and
derive the results cited in Section 5.2. In this case,
the reproductive number given by eqn (5) is

R0"rbq,

where we drop the overbars since we have
a single group. We can rewrite formula (6),
dropping the subscripts because we have a
single group and de"ning a new parameter
u"!ln(1!f) so that

b"1!(1!f)c"1!e~uc.

Here f is a parameter between 0 and 1, and
u'0. From eqn (7)

c(r)"104r~g#1, (A.1)

and therefore

R0(r)"r (1!e~uc(r))q.
Note that

lim
r?0

c (r)"R implies lim
r?0

R0 (r)"0,

lim
r?=

c (r)"1 implies lim
r?=

R0(r)"R,

and that R0 (r)*0 is "nite for all "nite values of
r*0. R0 (r) is a continuous function, and its
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derivatives with respect to r are

R@
0
(r)"(1!e~uc(r)#ruc@(r)e~uc(r))q

"(1!e~uc(r) (1#ru104gr~g~1))q (A.2)

"(1!e~uc(r) (1#ug (c(r)!1)))q
and

RA
0
(r)"((uc@ (r) (1#ug(c (r)!1))

!ugc@(r))e~uc(r))q (A.3)

"(uc@ (r) (1!g#ug(c(r)!1))e~uc(r))q.

As r increases from zero, there are three pos-
sible ways that R0 can vary:

1. R0 is monotonically increasing in r with
R@

0(r)'(0).
2. R0 has one or more maxima and minima for

r'0. The maxima and minima have to appear in
pairs, and thus there will be even number of
extreme values where R@

0
(r)"0.

3. R0 is monotonically non-decreasing in r,
but has one or more points where the slope of the
curve of R(r) is zero. In this case, there will be
r values where R@

0
(r)"0"RA

0
(r).

Since c@(r)"!104gr~g~1(0 for r and g
positive, RA

0
(r)"0 if

1!g#ug (c (r)!1)"0. (A.4)

Substituting formula (A.1) for c (r) into eqn (A.4)
and rearranging the terms shows that RA

0
(r)"0

only when

g!1
ug "104r~g. (A.5)

Equation (A.5) has a unique positive solution

r**"A104ug
g!1 B1@g (A.6)

if and only if g'1. That is, there is at most
one pair of maxima and minima for R0(r), and
they can only occur when g'1. When g)1,
RA

0
(r)'0 and R0 (r) is monotonically increasing

in r.
The plots of R@

0
(r) for various values of g and

u indicate that there are two real roots
r"r$(g, u) of R@

0
(r)"0 only within a particular

range of these two parameters. Thus, R0(r) has
both a maximum and minimum only within this
range. The roots r$ merge along a curve in g}u
space, and along this curve R@

0
(r)"0"RA

0
(r).

Solving both of these equations simultaneously,
and eliminating r, gives this curve.

Substituting eqn (A.4) into the expression for
R@

0
(r) and setting it to zero, we get

R@
0
(r**)"0"(1!e~u~1`1@gg)q

"(1!(1!f)e~1`1@gg)q. (A.7)

Solving eqn (A.7) for f then gives

f**"1!(1/g) e1~1@g. (A.8)

Then two roots of R@
0
(r)"0 exist for f(f**, one

root for f"f** and no roots for f'f**.
The r at which this double root occurs is then

given by substituting eqn (A.8) for f into the
expression (A.6) for r** to get

r
double

"
104(g ln(g)#1!g)1@g

g!1
.

It is this curve which is plotted in the upper
left-hand corner of Fig. 7. Along this curve R0 has
a single in#ection, above it R0 is monotonic, and
below it R0 has a local maximum at a value
r"r` and a local minimum at r"r~, where
r~'r`.

These values for r$ are the roots of eqn (A.2),
and they depend on both g and f. They are solved
for numerically and shown in the upper right-
hand corner of Fig. 7 as a function of f, for two
values of g, where r~ is the solid line and r` the
dashed line. Thus, when f(f**, R0(r) starts out
from zero at r"0, increases until r"r`, de-
creases until r"r~, and then increases mono-
tonically for r'r~, going to in"nity as rPR.
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